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Abstract

Recognition and extraction of features in a nonparametric density estimate is highly de-
pendent on correct calibration. The data-driven choice of bandwidth A in kernel density
estimation is a difficult one, compounded by the fact that the globally optimal A is not
generally optimal for all values of x. In recognition of this fact, a new type of graphical
tool, the mode tree, is proposed. The basic mode tree plot relates the locations of modes
in density estimates with the bandwidths of those estimates. Additional information can
be included on the plot indicating such factors as the size of modes, how modes split, and
the locations of antimodes and bumps. The use of a mode tree in adaptive multimodality
investigations is proposed, and an example is given to show the value in using a Nor-
mal kernel, as opposed to the biweight or other kernels, in such investigations. Examples
of such investigations are provided for Ahrens’ chondrite data and van Winkle’s Hidalgo
stamp data. Finally, the bivariate mode tree is introduced, together with an example using
Scott’s lipid data.

Keywords: Mode estimation; Bump hunting; Multimodality; Graphical methods; Ker-
nel density estimation; Kernel choice.



1 Introduction

Structure in data sets reflects features of the underlying density function. Features of
interest include modes, or local maxima; antimodes, or local minima; and “bumps,” or
regions where the second derivative is negative. In an exploratory setting, the number and
location of these features is not known a priori. The parametric form of the density is
generally poorly understood and any tentative choice may be too restrictive. Under such
circumstances, a nonparametric density estimation technique can be highly valuable.
Kernel density estimation is a popular example of nonparametric density estimation
(Rosenblatt, 1956; Parzen, 1962). Given a sample {X1,..., X,} of size n, the kernel

density estimate at x is computed as

A 1 & r— X; 1 &S
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where K}, (t) = K(t/h)/h and K is known as the kernel. The kernel estimator is equivalent
to a mixture density with the function K equally weighted and centered at each X,. If the
kernel K itself is assumed to be a density function, then fh() is nonnegative and integrates
to one. K is generally taken to be symmetric with mean 0 and positive variance. The
statistical properties of the modes of fh() have been studied by Parzen (1962) and Eddy
(1980).

In Figure 1, a kernel density estimate and its component kernels are displayed for
the chondrite meteorite data (Ahrens, 1965). These data, the percentages of silica in 22
chondrite meteors, were first discussed in the bump-hunting context by Good and Gaskins
(1980). The vertical lines below the wz-axis represent the values of the individual data
points. The Normal kernel,

is used in this estimate. We shall return to the example of the chondrite data several times.

After K has been chosen, the remaining element to be specified is the bandwidth pa-
rameter A. The bandwidth is a rescaling factor which determines the extent of the region
over which the probability mass for point X; is spread. The choice of this parameter is
quite crucial to the final density estimate both locally and globally. In Figure 2, we display
twenty different Normal kernel density estimates of the chondrite data, with bandwidths
ranging from 0.2 to 3.0. The amount of information about the number and location of po-
tential bumps and modes is quite large in this figure, to the point of being overwhelming.
The number of modes and bumps increases rapidly as h — 0.

Unfortunately, h must be selected by the user, and no completely satisfactory method of
doing so has been found. [Scott (1992) presents a survey of available techniques that focus
on minimizing Ly error, a criterion which is only loosely related to bumps and modes.]
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Figure 1: Normal kernel density estimate of the chondrite data with A = 1.0, along with
the data points (at bottom) and the individual kernel masses which make up the estimate.

Even assuming the best global choice for h, the fact remains that no single value of h
will perform well for all points x (Terrell and Scott, 1992), as we will demonstrate in
Section 4. Jones (1990) and Terrell and Scott (1992) have investigated the theoretical and
practical advantages of an adaptive kernel estimate introduced by Breiman, et al. (1977)

and Abramson (1982):

(2)
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where h varies with sample point X;. Unfortunately, the original problem of choosing
one smoothing parameter i in Equation 1 has been replaced by the necessity of choosing
many smoothing parameters in Equation 2. In a related approach, Wand, Marron, and
Ruppert (1991) have examined the use of data transformation families in estimator (1) to
address the problem. Here, the difficulty of choice of bandwidth remains, plus there is the
additional problem of choice of transformation. No method seems to be sufficiently general
to work for all densities or data sets.

In this paper, when we focus our attention on a particular mode, we desire an adaptive
estimator. We compromise by using a fixed, but different, bandwidth for each potential
mode. Graphical tools help us in this investigation and in the organization of our results.
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Figure 2: Twenty Normal kernel density estimates of the chondrite data. Bandwidths are
equally spaced on a logarithmic scale, and range from 0.2 to 3.0.

2 The Mode Tree

The difficulties inherent in the choice of a specific h suggest that another method of viewing
the data might be appropriate, one which summarizes information from density estimates
calculated for a large variety of values of h. One possibility is the overlaid density plot
shown in Figure 2. While such a figure certainly has value, it is difficult to pull out
information on any single estimate. Another option, used by Roeder (1990), treats h as
a second independent variable. Here, a sequence of density estimates is viewed using a
perspective plot of the function ¥(x,h) = fh(:zj); see Figure 3. While we find this plot
more informative than Figure 2, its use also invokes all of the disadvantages of perspective
plots, most notably hidden features and difficulties in interpreting the complex surface.
The figure seems to overemphasize estimates with small bandwidths. The eye is drawn to
the high, sharp peaks at the back of the plot, to the neglect of the lower and broader, but
potentially more realistic, features found at wider bandwidths.

Another possibility is a dynamic display on a computer screen, in which the estimate
varies as the user interactively adjusts the smoothing parameter. Tierney (1990) describes
such a procedure. While this is potentially a powerful tool with which to investigate
estimates calculated using a variety of bandwidths, it is limited by the need for a computer
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Figure 3: Perspective plot of ¢ (x,h) = fh(:zj) for the chondrite data. Forty density estimates
are plotted, with bandwidths ranging on a logarithmic scale from 0.2 (at the rear of the
plot) to 3.0 (at the front).

screen to display, not merely calculate, the results. Static plots require only paper or
transparency to display once their computations have been performed.

If the key information about the structure in an estimate at a given bandwidth can
be condensed to a 1-dimensional plot, then the second dimension can be allocated to h,
without the problems of perspective plots. As the most easily visible changes in a density
estimate due to varying h have to do with the number, location, and size of modes (i.e.,
the “wiggliness” of the density), these features provide a good 1-dimensional surrogate for
the density estimate as a whole. In addition, when there is strong reason to believe that
multiple modes are present in the true density, they are often among the most important and
interesting features. Thus, in lieu of presenting the entire collection of density estimates,
information about their modes is a valuable contribution.

The basic mode tree is very simple to define. The mode locations are plotted against
the bandwidth at which the density estimate with those modes is calculated. In Figure 4,
the solid vertical lines represent the modes corresponding to those in the density estimates
in Figure 2 for the chondrite data. A larger number of values of h (here, 200) is used in
producing the mode tree than in the superimposed plot. Notice the choice of the logarithmic
scale for the vertical axis. The values of h should be chosen to be equally spaced on a
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Figure 4: Normal kernel mode tree for the chondrite data. Solid lines represent mode
locations at each bandwidth. The horizontal dashed lines indicate the “splitting” of a
mode.

logarithmic scale, as large changes at high values of h have less of an effect on the density
estimate than smaller changes at lower values of h. If the mode locations are plotted for
all value of h, then a set of lines, or mode traces, will result. In the Appendix, a matching
algorithm is described to determine the mode traces derived from a finite set of mode points
so that they can be connected between levels.

It is useful to think of modes “splitting” as h decreases, or, alternatively, “coalescing”
as h increases. Between any pair of adjacent modes is a valley containing exactly one
antimode. As h decreases, a critical or saddle point appears between two adjacent modes
and thereafter a new mode and antimode appear. This event will be apparent from the
increased number of mode locations. The new mode is the one at the smaller value of A
not matched to any mode from the previous, slightly greater, value of A. Depending on
the relative location of the new mode/antimode pair, either the left or the right mode may
be thought of as splitting. If the new mode appears to the right of the new antimode, it is
the left mode which has split; otherwise, the right. Thus the mode tree may be made more
informative by adding the horizontal connections seen as dashed lines in Figure 4. These
connections show the relationships between new modes and the old modes from which they
split. These connections give this plot the structure which justifies the “tree” label.
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Figure 5: Biweight kernel mode tree for the chondrite data. Note the modes which appear
briefly and then vanish, as well as the modes which continue after the point at which they
split.

The mode tree in Figure 4 was calculated using a Normal kernel, as in Figures 1, 2, and
3. This choice was quite deliberate. Silverman (1981) showed that for a Normal kernel,
the number of zeroes in all derivatives of fh is monotone decreasing in h. These zeroes
include all modes, antimodes, and inflection points. Silverman’s proof hinges on the fact
that the Normal density is totally positive and that the convolution of a Normal kernel
density estimate with bandwidth h; and a Normal density with standard deviation h, is
also a Normal kernel density estimate with bandwidth hs = (h? + h2)'/2. The desirable
behavior in fh can be clearly seen in Figure 4. All modes found at a given level of h remain
as h decreases.

Surprisingly, this result need not be true for other kernels. Figure 5 shows the mode
tree generated by the same chondrite data set but using the biweight kernel,

i 15
K(x) = —(1—2*) Iy ().
16
Keep in mind that smoothing parameters for different kernels (and thus the y-axes of
Figures 4 and 5) are not directly comparable. Sample modes appear and disappear in an
irregular fashion. The appearance of such distracting features in practical situations is not



well recognized. These spurious peaks are generally quite small and are more accidents of
the estimation method than true features of the data. Similar results have been observed

in estimates from other members of the Beta family (of the form ¢, (1 — 2?)™, where m

b
is an integer and ¢, is the constant which makes the kernel integrate to 1 in the range
[—1,1]), even though the family approaches a Normal kernel as m — oco. In addition, while
a mode tree generated using a Cauchy kernel appeared well-behaved, indicating that the

Normal kernel may not be unique, those generated using the “arctan” kernel

i 35/4 . 39/4|$|3
K (l’) = W [5 — arctan (W)]

(with infinite support but discontinuous third derivative) and the “bump” kernel

—1
K(z) = 2.25228 ex ( ) I_y(x
( ) p 1_ xQ [ 171]( )
(with finite support but infinitely continuous derivatives) did not. Thus neither infinite
support nor continuous derivatives alone appear to guarantee good behavior of the mode
tree, and we conclude that the Normal kernel should be used for mode tree computations.

3 Enhancements to the Mode Tree

As we have shown, the basic mode tree, in and of itself, can be quite informative and useful.
Yet the possibility exists to significantly increase the information presented, thereby further
improving our understanding of the data.

Our first enhancement is to add a dimension of information through the widths of the
mode traces in the mode tree. Typically, that information relates to some feature of those
modes. In Figure 6 we plot an enhanced mode tree of the chondrite data. The lines of
Figure 4 have been replaced by the black regions centered on each mode location and
whose horizontal width at each level of h represents the probability mass of the mode at
that bandwidth. More precisely, the width is proportional to the quantity

by (h)
My = [

2l

() = mase (fufas (). Fulbs ()| (3)

where a;(h) and b;(h) are respectively the left and right antimodes surrounding mode j in
fh(:zj) (and which may be —oo and 400, respectively), and the “+” denotes the “positive
part” of the argument. In Figure 7, the values of My, M,, and M3 when h is 1 are equal
to the indicated shaded areas. This value is representative of the “size” of the mode,
and in fact can be used as a statistic to test the reality of the mode in question when
the bandwidth is chosen appropriately (Minnotte, 1992). M; is the minimal L; distance

7
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Figure 6: Enhanced Normal mode tree for the chondrite data. The widths of the black
regions are proportional to M; for the modes at each level. The dots represent the locations

of antimodes, and the gray regions are the bumps.

from the density to the set of continuous functions without a local maximum between
the observed antimodes in the density function. M, is also the single-mode equivalent of
Miiller and Sawitzki’s (1991) excess mass functional. The excess mass functional measures
the amount of probability mass above the contour f(x) > ¢ and is not locally defined as in
Equation 3.

A second enhancement which is also simple to include on the plot are the locations of
antimodes. The enhanced mode tree for the chondrite data is shown in Figure 6 using dotted
lines for the antimode traces. Observe that the additional information does not appreciably
clutter the diagram as the mode and antimode traces are approximately parallel and do
not cross.

In addition to modes, authors such as Good and Gaskins (1980) have investigated the
presence of bumps or regions where the second derivative of a density estimate is negative.
These can be easily added to the mode tree. While inflection points could simply be plotted
with one or two additional line types, shading the entire area of each bump, as in the gray
regions of Figure 6, is much more visually striking and suggestive. Clearly, at any given h,
each mode has a surrounding bump, but the reverse is not necessarily true. A bump can
occur on a slope, where the second derivative changes sign, but the first derivative does
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Figure 7: My, My, and M3 are equal to the indicated shaded areas for the chondrite data
when h = 1.0.

not. For an example, see the right slope of the tallest peak in Figure 12. 1t is interesting to
note that a new mode will always start at the boundary of its shaded bump region. This
is to be expected, but it is still interesting to view graphically.

Finally, important values of either = or of h can be highlighted. Values of the sample
mean, median, or quartiles might be shown. Appropriate special values of h include cross-
validation bandwidths or Terrell and Scott’s (1985) oversmoothed Normal bandwidth given
by

36

hOS
(35)1/5

where & is the sample standard deviation. The oversmoothed bandwidth A5 and the sample
median and quartiles for the chondrite data are indicated in Figure 6.

It should be noted that the undesirable behavior observed for non-Normal kernels il-
lustrated in Figure 5 is not limited to the mode. In Figure 8, a plot is shown of modes,
bumps, and antimodes, from biweight kernel estimates of the chondrite data. Clearly, the
same undesirable behavior observed in the modes is occurring in the bumps and antimodes
as well. Note, for example, the behavior near x = 31 and A = 1.5. An antimode briefly be-
comes a mode, with surrounding bump, before quickly becoming an antimode again. Such
occurrences, along with the highly erratic behavior of modes, antimodes, and inflection

(/OO ¢2)1/5 n~U% = 35(70\/mn) Y5,
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Figure 8: Enhanced biweight mode tree for the chondrite data. In comparison to Figure 6,
note the erratic behavior of modes, antimodes, and bumps.

points, all point to how strongly inappropriate the biweight kernel is for multimodality in-
vestigations and bump hunting, especially when using a concept such as Silverman’s (1981)
“critical bandwidths.” However, we note that the undesirable analytical behavior is limited
to relatively flat regions near a mode or antimode and is relatively difficult to discern in a
plot of the density estimate. For example, Figure 9 indicates the mode mentioned above
on a plot of the biweight estimate of the chondrite density with A = 1.5. This is the largest
that this mode appears for any bandwidth.

4 An Application to Investigations of Multimodality

Minnotte (1992) demonstrates an additional use of the mode tree in the investigation of
multimodality. The null hypothesis of the proposed test is that a mode in question is
simply an artifact of the data, against an alternative that the mode is a true feature of
the population density. Thus, the test is of the reality of individual modes, rather than of
the number of modes of the density as a whole. A method is needed to choose the proper
bandwidth at which to test each mode. The basic mode tree (with split-mode connections)
fulfills this function admirably.

10
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Figure 9: Biweight estimate of the chondrite density with bandwidth 2 = 1.5. The indicated
mode appears only within the range of bandwidths 1.45 < h < 1.67.

The test statistic M; defined in Equation 3 is monotone decreasing in h. Each mode is
tested at the smallest value of h for which the mode is still entirely a single entity, that is,
at the value of h one step larger than the level at which the mode splits. Such bandwidths
are the same as Silverman’s critical bandwidths, but are associated with particular modes
and not the overall number of modes observed at that level of h. Testing at these levels
ensures that the test statistic will be as large as possible. The test involves recomputing
M; from bootstrap resamples to obtain an empirical p-value and is described in Minnotte
(1992). The bootstrapping follows Silverman (1981), except in choice of bootstrap density.
Here, in order to conform to the null hypothesis, the tested density is adjusted by moving
part of the probability mass of the mode in question into one or both of the surrounding
valleys.

Minnotte (1992) demonstrates that in the cases of unimodal and bimodal densities (to
which all densities reduce due to the asymptotic locality of kernel estimators), the test
statistics of the first two modes tested converge to zero and the equivalent masses of the
true density, respectively. The proofs are based largely on results in Mammen, Marron,
and Fisher (1992).

After the mode tree is used to choose the bandwidths at which to test, the results can
be displayed on the mode tree. For example, with the chondrite data, the results of the test

11
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Figure 10: Mode tree used for multimodality testing of the chondrite data. Filled circles
represent modes tested as significant at the a = 0.15 level, open circles are modes which
are not significant at this level.

are indicated just above each split in the unenhanced mode tree of Figure 10. Filled circles
indicate that the null hypothesis has been rejected at the fairly generous a = 0.15 level
(suggesting that the mode is real), while open circles indicate a failure to reject the null
hypothesis at that level. The actual estimated p-values for the 3 modes are 0.061, 0.015,
and 0.005 from left to right. Choosing an a-level greater than 5% has been commonly
recommended for this problem; see Matthews (1983) and Izenman and Sommer (1988).
Clearly, a lower choice of a will lead to a more conservative selection of possible modes.
In an exploratory setting, with moderate sample sizes, a fairly high choice of o seems
reasonable.

The number of significant modes estimated from the data is calculated in a recursive
fashion. FEach mode tested leads to two branches (which may have one or more tests
themselves). If the mode is non-significant, the number of modes it passes up to its parent
mode in the tree is simply the sum of the number of modes passed up by its two branches.
If the mode is significant, it passes that sum or 1, whichever is greater. This means,
for example, that the significant modes near = 33.4 in Figure 10 are all counted as
a single “real” mode, while there are three such modes in the entire distribution. Non-
significant modes at the same location but different bandwidths as those found significant

12



are disregarded, being viewed as simply being tested at inappropriate bandwidths. Either
h is too large, and the mode has not yet appeared sharply, or A is too small, and too much
of the mode’s mass has been separated into other modes which have already split off. The
mode tree is an integral part of summarizing this recursive procedure.

It should be noted, that while a single test, especially one specified in advance (by
theory), satisfies the requirements of classical hypothesis testing, the simultaneous nature
of the large number of tests on the mode tree does not. Thus, it may be more appropriate
to consider the entire mode tree with tests as an exploratory device, useful in indicating
which modes may be worthy of further study. This may include modes missed by tests
such as Silverman’s which may be more conceptually valid, but which are handicapped by
the use of single bandwidths.

In Figure 11, we show the mode tree for the 1872 Hidalgo stamp thicknesses (n =
485) measured by Walton van Winkle and analyzed in Wilson (1983) and Izenman and
Sommer (1988). Wilson hand-smoothed a histogram on the 437 unwatermarked stamps
without gum, and came to the conclusion that the data were bimodal, with modes near
077 mm and .105 mm. [zenman and Sommer applied the critical-bandwidth test described
in Silverman (1981) to the full set of 485 measurements. Their results supported Wilson
in rejecting unimodality, but indicated seven modes (located at .072, .080, .090, .100, .110,
120, and .130 mm), rather than Wilson’s two. When Izenman and Sommer applied a
square root transformation to the data in an effort to check for spurious modes in the right
tail, Silverman’s test supported nine modes, the same seven modes, plus an additional two
in the left tail at .060 mm and .064 mm. We note that the small mode at .060 mm is based
on only a single data point.

The mode tree shown in Figure 11 indicates that the transformation attempt may be
misfiring in two ways. All seven modes of the original test are indicated, as well as the
larger of the two small left-tail modes found by Izenman and Sommer after transformation.
In addition, however, we found two additional and tantalizing modes at .075 mm and .115
mm. The estimated p-values for the ten modes from left to right are 0.148, 0.003, 0.109,
0.003, 0.112, 0.008, 0.013, 0.120, 0.085, and 0.023.

The more impressive of the new modes is at .075 mm, and may be clearly seen in
Figure 12, as the medium-sized peak between the two large modes at .072 mm and .080
mm. It is not surprising that Silverman’s test missed these modes, for by the time the
bandwidth is small enough to distinguish these modes from their large neighbors, numerous
spurious modes have appeared in the right tail of the density. This is a prime example of
the inability of a single h to work well for all x, mentioned in Section 1. Under such
circumstances, any procedure testing multimodality globally using a single bandwidth is
likely to fail to recognize such modes.

13
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Figure 11: Mode tree used for multimodality testing of the Hidalgo stamp data. Filled
circles are represent modes tested as significant at the a = 0.15 level. Open circles represent
modes not judged significant at this level.

5 Bivariate Mode Trees

Given that the mode tree is so useful in one dimension, the potential should be even greater
in two dimensions when options such as Figures 2 and 3 are not available. While including
all of the information of Figure 6 is probably impossible, a three-dimensional plot of mode
locations and bandwidth is both feasible and useful.

An example of a bivariate mode tree is displayed in Figure 13. The data set is the
320 lipid (cholesterol and triglyceride) levels of men with heart disease from Scott, et
al. (1978), who observed a strong bimodal feature. A logarithmic transformation was
applied in each dimension, and then the marginal data were standardized to have sample
variance 1. This standardization is necessary, as a single value of h was used for the
bandwidth in both dimensions. We note that such marginal standardization and use of
a single bandwidth is not the optimal procedure for pure bivariate density estimation
purposes. The contour plots of the bivariate Normal kernel density estimates at the top
and bottom of the figure correspond to bandwidths of 1.0 and 0.2, respectively. The
thick mode traces represent the modes for 201 bivariate kernel estimates with bandwidths
between these levels (equally spaced on a logarithmic scale). To aid interpretation, the

14



NI
"
4

|

0.06 0.08 0.10 0.12 0.14

Density Value

Stamp Thickness (mm)

Figure 12: Kernel density estimates for the Hidalgo stamp data; A = 0.0005. Modes found
significant at the a = 0.15 level are indicated by arrows.

bivariate mode traces are projected onto the zh- and yh-planes. The lack of simple ordering
on the plane makes the concept of “splitting” far more problematical than in the univariate
setting. As connections would crowd an already complicated plot, and there are problems
associated with them (both practical and conceptual), no attempt was made to draw such
connections.

Only a single mode was found for values of A larger than 0.59, while 26 modes were found
by the time i was 0.2. Note that several modes based on outliers appear before larger modes
(as indicated by the lower contour plot) near the center of the density. This indicates that
a bivariate version of Silverman’s test would suffer from the lack of adaptivity mentioned
in the discussion of the stamp data even more severely than the univariate version does.
The bivariate multimodality testing problem should be quite challenging.

6 Discussion

The increases in computing power of the past few years have vastly enlarged the potential
scope of our statistical toolbox. By utilizing the capabilities of today’s machines, we no
longer need restrict ourselves to one or even a few bandwidths in nonparametric density

15



Figure 13: Bivariate mode tree for the standardized logarithm of the lipid data. The
bandwidth h ranges from 0.2 (at the bottom of the plot) to 1.0 (at the top), equally spaced
on a logarithmic scale. The contour plots represent the density estimates at the extreme
bandwidths, and the bivariate mode traces have been projected onto the xh- and yh-planes.

estimation. The mode tree (which perhaps should be called an acrogram, from the Greek
root acro for “top” or “peak”) is one direction in which this potential can be realized.

In addition to uses in multimodality investigations, the mode tree is also valuable in
standard density estimation, by indicating how key features in a density estimate will react
to changes in the bandwidth, and identifying interesting bandwidths. It also indicates
another direction for adaptive density estimation. The choice of bandwidth for given regions
can be determined by the mode tree and the multimodality tests which use it.

A related problem is the consideration of extrema in a nonparametric regression curve;
see Mammen (1991). The mode tree can be adapted to that setting.

Testing bumps as well as modes is also feasible, using either the bump information in
an enhanced mode tree, or using a basic mode tree based on ff’” instead of fh. In any event,
we have shown that the mode tree can be a valuable graphical tool in any data analysis for
which bumps and modes are items of interest.

16
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Figure 14: Example of the point-matching algorithm described in the Appendix and used
to connect the mode traces. The arrows indicate points among the two sets which are
matched.

Appendix: A Univariate Point-Matching Algorithm

The vertical connections of the mode tree require a matching algorithm of some kind. The
one used by the authors works as described in the following paragraphs and Figure 14.
The matching procedure will be described for ordered sets of points a = (a1 < ay <
< ag,)and b= (b < by <...<by). Foreachi=1,...,k,, set

;1 = min{ﬁ; |CLZ' —bg| S |CLZ' - b]| \V/] = 1,...,]65}.

Thus oy 1s the index of the member of b which lies closest to a;. If a; < by or a; > by,, set
a9 to 0, otherwise

min{/; by > a;}, if a; > by,
ae = max{/l; b, < a;}, if a; < b,
min{/l; |a; — be| < |a; — b;| Yj# an}, ifa;=0b,,.

Here a;y gets the index of the closest member of b to a; which lies on the other side of a;
from b,,,. The values 3;; and (3;, are found by reversing a and b in the above formulas.

17



With the above four lists of indices, ay, aq, f1, and (33, we begin the actual process of
matching. For each value: =1,... k,, we see if

ﬁaul = i,

which would indicate that a; and b,,, are each the closest element in the other list to each
other. If this is true, a; and b,,, are considered matched to each other and removed from
further consideration. Assuming the h’s are picked to be reasonably close together, most
of the modes should have been matched in this step. After all such pairs are removed, the
remainder are investigated further. For any ¢ such that a; was not matched in the first

cycle, if b,,, also remains unmatched and

6%‘12 = i,

a; and b, are matched and removed. The process is repeated on the remainder two more
times, the first time matching still unmatched pairs if

Bapr =1
and the second time matching any remaining pairs if
Boin2 = 1.

In each of these two cases, a; is matched with b,,,.
For the example in Figure 14, consider ¢ = (0.1,0.3,0.45,0.6,0.95) and b = (0.15,
0.5,0.8,0.9). Then ay = (1,1,2,2,4), ay = (0,2,1,3,0), 81 = (1,3,5,5), and B2 = (2,2,4,

4). The first round matches a; with by, as with by, and as with by. (For example, ag; = 2

i1

and (21 = 3.) Removing these pairs leaves as, a4, and bs. No pairs are matched in the
second and third rounds, but since ayy = 3 and (33 = 4, a4 and b3 are matched in the final
cycle. The point a; remains unmatched.

By using a matching algorithm such as this, we can quickly match modes to those of the
previous (next-highest) value of h. Any unmatched modes of the new set are considered
new and attached horizontally as described in Section 2.
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